
Virtual Deobfuscator

Removing virtualization obfuscations
from malware – a DARPA Cyber Fast

Track funded effort

1

Approved for Public Release, Distribution Unlimited

Overview

• What is virtualization obfuscations?

• Why we care

• What has been done?

• Solution

• Future work

• Source code/Questions

2

What is Virtualization Obfuscation

• Software protection

• Translation of a binary into randomly
generated bytecode

• Bytecode is a new instruction set targeted
typically for RISC based architecture VM which
runs on x86

• Original binary is lost

3

Why we care

• Superior anti-reverse engineering technique

• Malware is using this technology to avoid
detection and analysis

• Analysis
– Static:

• Disassemblers fail on new bytecode

– Dynamic:
• Difficult due to finding the boundaries between interpreter

and translated original program

• Vast numbers of instructions

4

Pain and Joy

• Slogging

– Understand logic of bytecode

– Custom disassembler

• Architecture specific?

– <Sigh>

– No ‘break once break everywhere’

• Automation would be nice…

5

What has been done

• Rotalume – Sharif

– Dynamic approach

• Unpacking Virtualization Obfuscators – R.
Rolles

– A static approach

• University of Arizona (Kevin Coogan, Gen Lu
Gen, and Saumya K. Debray)

– Dynamic approach

6

Virtual Deobfuscator

• Developed in Python

• Uses a run trace

• Filters out VM interpreters logic
– RISC pipeline

• Result: Bytcode interpretation (syntax and
semantics)

• Architecture agnostic

• Recursive clustering

• PeepHole Optimization

7

Virtual Deobfuscator Flow

Debugger/Malware
Analysis Software

IDA Pro/Disassembler
Analysis

Parse
Runtrace

Cluster
Patterns

… Recursive
Clustering …

Repackage
Binary

Peephole
Optimization

Parser

• Parse run traces into a XML based database

– OllyDbg 2.0

– OllyDbg 1.0

– Immunity

– WinDbg

– Source code available – so you can add your own

• Hypervisor, hardware emulator, etc

Parser

• Creates a file called vd.xml

• > python VirtualDeobfuscator.py -i file.txt -d 1
-t verify.txt

Clustering

11

2nd Pass 4th Pass 3rd Pass 1st Pass

ABABC

ABAB

AB
A

B

AB
A

B

C C C

D D D D

ABABC

ABAB

AB
A

B

AB
A

B

C C C

E E E E

004041E8 mov eax, 5A4Dh

004041ED cmp [ecx], ax

004041F0 call 0x401000

…

004040D0 push 14h

004040D2 push 408968h

004040D7 push 1h

…

Translated
bytecode
instruction

Translated
bytecode
instruction

VM interpreter
instructions

Cluster

Clustering

• Parse run trace

• Create clusters by grouping snippets of
assembly instructions

• Create new clusters based off pattern
matching

• Assign each cluster a notational name that
reflects depth of cluster (i.e. A, B, AB, etc)

• Loop until no more clusters

c2______#8

• 'c' - the processing round (“a”, “b”, “c”, etc.) [c =
round 3]

• '2' - ascending integer, unique per round [ID = 2]

• '_____' shows depth

• '#8' - number of instructions in a cluster [size = 8]

• Example: c2______#8

– c = round 3, '2' = second cluster, '____' = depth, '#8' =
contains 8 ins

Cluster Sample

• > VirtualDeobfuscator.py -c -d 1

Loop 1

 Loop 2

 if (only)

 {

 _asm { mov eax, 0xDEADBEEF }

 only = false;

 }

Console output...what's all that about

Clustering Loop sample

.... (start up code)
004113D3 JMP SHORT 004113DE
c1______#11
c2______#8
f1_______________#47
c1______#11
a21_#2
c2______#8
a21_#2
00411411 MOV EAX,DEADBEEF ;EAX=DEADBEEF
f1_______________#47
a16_#2
00411427 MOV ESI,ESP ;ESI=0018FE34
... (wrap up code)

Sweet!

Clusters

Clustering Sample – Code Virtualizer

 OR AX, 0xC0A1 ; ax = DEAD – Original Code

...
42D6BC NOP
42D6BD JMP 0049E22D
49E22D PUSH OFFSET 0049D34B
49E232 JMP 00499130
k7______________________________#3508

499B7D MOV AX,WORD PTR SS:[ESP]
499B81 PUSH EAX
499B82 JMP 0049AC87
49AC87 PUSH ESP
49AC88 POP EAX
49AC89 JMP 0049D056
49D056 ADD EAX,4
49D05B ADD EAX,2
49D060 XCHG DWORD PTR SS:[ESP],EAX
49D063 POP ESP
49D064 OR WORD PTR SS:[ESP],AX
49D068 PUSHFD
49D069 JMP 004993DE
k8______________________________#3196
....

A lot of instructions folded up in k7
cluster. This cluster likely represents
the interpreter's loading of the
emulator, loading of bytecode,
simulated CPU pipeline (prefetch,
decode, execute). 3,508 ins worth.

Starting area for unique translation

GOLDEN! AX becomes DEAD

Step 1: A Deeper Dive - Internals

• Create Frequency Graph - freq_graph[]

 cluster line numbers

 4113D3 - [13]
 4113D5 - [44, 77, 115, 148]
 4113D8 - [45, 78, 116, 149]
 4113DB - [46, 79, 117, 150]
 4113DE - [14, 47, 80, 118, 151]

This ins @ 4113d5 occurs on
lines 44, 77, etc it is the
beginning of a basic block

A new basic block begins

Step 2: Compress Basic Blocks

• Window size - window[] - A table of window
sizes for each cluster with an cluster id

• Only done once

cluster window size new cluster id
4113A1 - [(1, 4113A1)]
4113A3 - [(1, 4113A3)]

4113D3 - [(1, 4113D3)]
4113D5 - [(3, a16_#3)] Our new cluster with size 3

 cluster line numbers

 4113D3 - [13]
 4113D5 - [44, 77, 115, 148]
 4113D8 - [45, 78, 116, 149]
 4113DB - [46, 79, 117, 150]
 4113DE - [14, 47, 80, 118, 151]

Step 3: Greedy Clustering

• Greedy refs cluster list, then iterates through
this list looking for more matches

• Recursive

4113A0
a_a1_#2 <- a_a1_#2 + a_a2_#3 match - will become new cluster b1___#5
a_a2_#3
a_a1_#2 <- a_a1_#2 + a_a2_#3 match - will become cluster b1___#5
a_a2_#3
a_a1_#2 <- no match, but could be another match for a1,a3
a_a3_#8

Step 4: Back tracing

• Optional – Testing purposes

– Verify clustering is working

b2______#22 a333_#5 a169_#17
b3_______#6 a179_#4 a263_#2
b4______#10 a747_#7 a162_#3
b5_______#7 a55_#2 a456_#

a55_#2 419C46 419C48
a456_#5 41C2E0 41C2E2 41C2E5 41C2E8 41C2EA
a601_#4 41CCE3 41CCE4 41CCE5 41CCE7
a78_#2 419D09 419D0B

Round B

Round A

Step 5: Last Clustering Step

• New Clusters - new_cluster_lst[]

• From here repeat the steps until no more
clusters

 line number new cluster id
 13 - 004113D3
 14 - b1___#7
 15 - b2___#4

VA if no cluster created

Cluster ID

Step 6: Final Step

• Final_assembly.txt

• Last Cluster file (round_cluster.txt)

 4113D3 JMP SHORT 004113DE
c1______#11
f1_______________#47
a21_#2
411411 MOV EAX,DEADBEEF
f1_______________#4

What we are interested in

4113D3
c1______#11
f1_______________#47
a21_#2
411411
f1_______________#4

More on Formatting
k2____________________________________#3265 [15, 990] 15 (5807)
e32___________#101 [16, 224] 16 (9072)
e56________#76 (9173)
e57___________#101 (9249)
f34___________#173 [19, 205] 19 (9350)
g18_______________#343 [20, 35] 20 (9523)
f37___________#173 (9866)
f38___________#179 (10039)
e64________#79 (10218)
k3________________________________#2919 [24, 47] 24 (10297)

[15, 990] 15 (5807)

 run trace line number

 current file line number of final_assembly.txt

 line numbers of where this cluster is duplicated on

Chunking

• Grouping of instructions based on cluster

• Found in DIR ‘chunk_cluster’

• f34___________#173_19.asm (19 is line num)

– Not intended to be assembled (.asm) for color
syntax in vi

• Can compare same clusters

Chunking Sections (-s size)
k2__#3265 [15, 990] 15 (5807)
e32___________#101 [16, 224] 16 (9072)
e56________#76
e57___________#101
f34___________#173
g18_______________#343
f37___________#173
f38___________#179
e64________#79
k3__#2919 [24, 47] 24 (10297)

VirtualDeobfuscator.py -c -d 1 -s 1300

New section file called 23.txt created

So why create all these sections?
 That is where our instructions of interest are at. After peephole optimization phase, we
will have the interpreted instructions of the original program, and then we are laughing!

Final Tally

• BAC – Blood Alcohol Calculator (77 instructions)

• Protected with VMProtect and Code Virtualizer

• ~255,000 ins

• Sections = 40,000 ins

• Virtual Deobfuscator reduced run trace by 85%

– ~90% reduction for VMProtect

• Why so much?

– Code obfuscations! <sigh>

Code Obfuscations

MOV EBP,76732756 ;EBP=76732756
AND EBP,45421A6A ;EBP=44420242
ADD EBP,39C01533 ;EBP=7E021775
JMP 0041B02B
AND EBP,41EA266F ;EBP=40020665
XOR EBP,40020661 ;EBP=00000004

PUSH 100F
MOV DWORD PTR SS:[ESP],EAX

POP ECX
PUSH ECX

And many more…

Repackage Binary
• NASM (The Netwide Assembler) http://www.nasm.us/
• Used to assemble ‘chunk_sections’ files
• Look for _nasm.asm (14_nasm.asm)
• Massaging run trace

– Assembler needs either 'h' or '0x' added to hex numbers
– Memory refs: e.g. MOV EDX,DWORD PTR DS:[EAX*4+__pioinfo]

– I skip over control flow breaks such as (jmp, jxx, call, rets)
– NASM does not support LODS, MOVS, etc (instead use

LODSB)
– I removed keywords such as OFFSET, PTR, SS:, DS:
– ST(0), ST(1) - NASM chooses to call them st0, st1 etc

• > nasm -f win32 final_assembly_nasm.asm

http://www.nasm.us/

PeepHole

• After binary repackaging, disassemble in IDA
Pro

• Python plugin (VD_peephole.py) to remove
code obfuscations

• Generates another ‘optimized’ assembly file

– Run nasm again on the optimized file for analysis
in IDA Pro or whatever disassembler you prefer

PeepHole (VD_peephole.py)

• Example of 5 instructions VM protected
– ADD ESP, 4

– LEA EAX, [drinks]

– PUSH EAX

– PUSH "%d"

– SCANF

• Equated to 3,329 instructions

• After machine code deobfuscation – 359
instructions

• From here it was easy to hand remove code to
see final equivalent instructions

Malware Analysis

• Win32.Klone.af – uses VMProtect along with NSPack

• Able to reduce the .vmp0 section to 50 instructions

• Quickly determined:
– Decrypt the compressed section of .nsp1 (to later be

decompressed into dynamic memory)

– Setup of local variables for VirtualAlloc

– Setup dynamic memory for VirtualAlloc

– Call VirtualAlloc

– Finalize the resource section in .nsp1, so that NSPacker can
decompress the newly decrypted compressed area of the
malware

Future Work

• Machine code deobfuscation
– This capability could filter out categories of

obfuscation patterns never seen before

• Profiler
– identify hot-spots

– aid for quick program understanding

– fixing bugs or to optimize code

– clustering method could be a similar concept in
lumping code and data flow into a more abstract
representation of the actual program run trace

Where to get it

• Available from
– http://www.hexeffect.com/virtual_deob.html

• POC: Jason Raber
– jason.raber@hexeffect.com

– Phone: 937-430-1365

• The views expressed are those of the author and
do not reflect the official policy or position of
the Department of Defense or the U.S.
Government.” This is in accordance with DoDI
5230.29, January 8, 2009.

http://www.hexeffect.com/virtual_deob.html
mailto:jason.raber@hexeffect.com

